Test Trimming

Jerry Gao 2014-9-13

Why Trimming ?

Why Trimming

Trimming allows the quality of a product to be enhanced during testing.

This is the only aspect of testing that adds value to the device.

Trimming is frequently performed after packaging to compensate for packaging effects.

Trimming Type ?

Fuse (poly, metal) Laser Zener E/EEPROM

Poly Fuse

Metal Fuse

Binary Weighted Resistor Trim Schemes Using Fuses

- Fuses are blown by forcing a controlled current through them.
 - A blown fuse appears to be an open circuit.
 - Probe pads and control pads for each fuse are required.
- No simulation available (difficult to simulate an open circuit).

1. POLY FUSE [RES_FUSE] v1

PDK Device name-RES_FUSE; SPICE Model Name-RES_POLY_L_LBC7; SV Model Name-FUSE

ALLOWED DEVICE DIMENSIONS	TARGET	LSL	USL	UNITS	COMMENTS	FOOT NOTES
Fuse link W (drawn)	0.7			um	Exact	
Fuse link L (drawn)	6.5			um	Exact	

ALLOWED OPERATING CONDITIONS		TARG	ET LSL	US	L 1	UNITS	COMMENTS	FOOT NOTES	
Temperature Range			-40	15	0	С			
Note: Tem	perature=2	7C unless specifie	ed oth	erwise.					
FAIL CRITERIA	SVN	ELECTRICAL PARAMETERS		TARGET	LSL	USL	UNITS		FOOT NOTES
Monitor	FUSE_P1I	Fuse Resistance Initi	al	25			Ohm	@0.1V	
Characterize	FUSE_I_I	Leakages Fuse- substrate(well) pre-blow					A	T=27C. Apply 0.7∨, measure I.	
Monitor	FUSE_R_B	Fuse Resistance Blov	wn	100	1		Mohm	n @0.1∨	
Characterize	FUSE_I1I	Leakages from first e the Fuse to substrate post-blow	nd of (well)				A	T=27C. Apply 0.7∨, measure I.	
Characterize	FUSE_I2B	Leakages from secor of the Fuse to substrate(well) post-	nd end blow				A	T=27C. Apply 0.7∨, measure I.	
Characterize	FUSE_IPL	Fuse Current Pulse H	leight	30			mA		
Characterize	FUSE_VPL	Fuse Voltage Pulse H	leight	6	5.5	8	Volts		
Characterize	FUSE_TR	Fuse ∀oltage Pulse F Time	Rise	50		500	ns		
Characterize	FUSE_TDU	Fuse Voltage Pulse Duration		10		50	ms		

Poly Fuse Blown Waveform

- Approximate 500ns duration of currents pulse during fuse blowing
- Current pulse provide

$$i = C \frac{du}{dt} \implies U(t) = U(0)e^{-\frac{t}{RC}} \implies C = \frac{t}{R \times ln \frac{U(0)}{U(t)}} = \frac{500 \times 10^{-9}}{25 \times ln \frac{7}{6.99}} = 14 \times 10^{-6} (uF)$$

For 3 fuses, take one capacitor 47uF

Fuse Layout Before and After Trimming

Layout Of View Of Fuse Memory Before Trim

Microphotograph Of View Of Fuse Memory After Trim (Fuse links blown by laser)

- Cut a thin-film resistor with a laser to increase its resistance value.
- Performed at the wafer level.

Ic

TES

Binary Weighted Resistor Trim Schemes Using Zener Diodes

- Zener diodes are blown by forcing a controlled current through them.
 - A blown zener diode appears to be a short circuit.
 - Probe pads and control pads are required for each zener diode.
- Can be simulated to verify best trim code.

Trim Simulation Using Zener Diodes Trim Memorv Trimmable Reference Control Voltage Reference **Simulation Mode Trim Value** Х Registers **Simulation Mode Control Trim Code** Zener trim technology provides the ability to simulate zap effects by Decode 4R_{isb} temporarily shorting individual zener diodes with test hardware relays. Switch 2R_{Isb} There are no simulation techniques available for Fuse technology. E/EEPROM technology can be RISD simulated.

Zapping Zeners

Zener breakdown ~11v in this case Voltage in yellow, Current in red. C2: Setup... Typical I/V Requirements: ABCD150 - ~13 V, 300 mA PVIP50 - ~5 V, 20 mA P2:freq(C1) P1:ampl(C P3:duty(C1) P4:---P5:---P6'value ototuo Voltage rises until zener breakdown Current probe had offset, absolute values are shifted (notice negative current before the zap)

At breakdown, current increases quickly

After Zener Zap

0000

A clear bright silver line in junction indicates good zap.

In some cases, the flow is Good zener zap subterranean, and appears as a fuzzy line.

EPROM Programming

FES

- Simulate and find the best-fit trim code.
- Program the EPROM register and verify result.
- Cycle power and read back programmed data. Verify that it is the correct data.
- Verify all electrical parameters.

EEPROM Programming

TES

- Simulate and find the best-fit trim code.
- Re-program the EEPROM register. Verify result.
- Cycle power and read back programmed data. Verify that the data is correct.
- Verify all electrical parameters.

Trimming

Trim parameter folding

Trim parameter folding

IC

TES

Note: The bad predictability can be avoided by doing the trim table char before the device trimming (execution of 'pre()').
As all the trim steps are measured before the trimming the class can use this values to trim accurately from the first unit on

Trimming

Trim parameter folding
 Reference Distributions

Reference Distributions

C

TES

Trimming

Trim parameter folding
Reference Distributions
Trim Flow

Trimming flow

Execute() function

- Execute() ...
 - Implements correct sequence of TREG calls (e.g. pre(), post(),...)
 - Ensures that trim learning works out of the box
 - Easies trim step characterization (for device char and during production)
 - Skips post trim measurement if not necessary (\rightarrow saves test time)
 - Takes care of datalogging
 - Test engineer can focus on implementing the measurement

